Resveratrol Tetramers from Vatica diospyroides

Eun-Kyoung Seo,^{†,‡} Heebyung Chai,[†] Howard L. Constant,^{†,§} Thawatchai Santisuk,[⊥] Vichai Reutrakul,^{||} Christopher W. W. Beecher,^{†,§} Norman R. Farnsworth,[†] Geoffrey A. Cordell,[†] John M. Pezzuto,[†] and A. Douglas Kinghorn^{*,†}

Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, Royal Forest Herbarium, Bangkok 10900, Thailand, and Department of Chemistry, Mahidol University, Bangkok 10400, Thailand

Received February 3, 1999

Vatdiospyroidol (1), a novel cytotoxic resveratrol tetramer, was isolated from the stems of Vatica diospyroides Sym. (Dipterocarpaceae) by bioassay-guided fractionation monitored with a human oral epidermoid carcinoma (KB) cell line. Another novel resveratrol tetramer, vaticaphenol A (2), was obtained as a noncytotoxic constituent, along with the known compounds, bergenin, betulin, betulinic acid, mangiferonic acid, and (*E*)-resveratrol $3-O-\beta$ -D-glucopyranoside. The structures of compounds 1 and 2 were elucidated by spectral analysis, including 1D and 2D NMR experiments, and by molecular modeling.

Introduction

The genus Vatica L. consists of over 60 species, which are small-to-medium-sized trees distributed primarily in Kalimantan and the Malay Peninsula.¹ Species in this genus grow in the drier areas of tropical evergreen forests and are found up to 1600 m in altitude.² Vatica belongs to the largest subfamily Dipterocarpoideae of the Dipterocarpaceae.^{1–3} Plants of this subfamily are known to elaborate mainly resveratrol oligomers, 3-18 sesquiterpenoids,¹⁹⁻²² and triterpenoids.¹⁸⁻²⁵ Resveratrol oligo-

- [‡] Current address: Chemistry and Life Sciences Group, Research Triangle Institute, P.O. Box 12194, Research Triangle Park, NC 27709. Current address: Pharmaceutical Research Institute, Bristol-
- Myers Squibb, 5 Research Parkway, Wallingford, CT 06492.
 - Royal Forest Herbarium.

- Mahidol University.
 (1) Symington, C. F. Forest Manual of Dipterocarps, Malayan Forest
- Records, No 16; Caxton Press, Ltd,: Kuala Lumpur, 1943.
 (2) Kostermans, A. J. G. H. A Handbook of the Dipterocarpaceae of Sri Lanka; Wildlife Heritage Trust of Sri Lanka: Colombo, 1992.
- (3) Van Slooten, D. F. In Bulletin du Jardin Botanique, Buitenzorg, Van Leeuwen, W. M. D., Von Faber, F. C., Beumée, J. G. B., Eds.; Archipel Drukkerij-Buitenzorg: Buitenzorg, Netherlands, 1927; Vol. 9, pp 67-136.

(4) Dai, J.-R.; Hallock, Y. F.; Cardellina, J. H., II; Boyd, M. R. J.

- Nat. Prod. 1998, 61, 351–353.
 (5) Diyasena, M. N. C.; Sotheeswaran, S.; Surendrakumar, S.; Balasubramanian, S.; Bokel, M.; Kraus, W. J. Chem. Soc., Perkin Trans. 1 1985, 1807-1809.
- (6) Bokel, M.; Diyasena, C.; Gunatilaka, A. A. L.; Kraus, W.; Sotheeswaran, S. Phytochemistry 1988, 27, 377-380
- (7) Sultanbawa, M. U. S.; Surendrakumar, S. J. Chem. Soc., Chem. Commun. 1980, 619-620.
- (8) Samaraweera, U.; Sotheeswaran, S.; Sultanbawa, M. U. S. Phytochemistry 1982, 21, 2585-2587.
- (9) Sotheeswaran, S.; Sultanbawa, M. U. S.; Surendrakumar, S.; Bladon, P. J. Chem. Soc., Perkin Trans. 1 1983, 699–702. (10) Gunawardana, Y. A. G. P.; Sotheeswaran, S.; Sultanbawa, M.
- U.S.; Surendrakumar, S.; Bladon, P. Phytochemistry 1986, 25, 1498-1500.
- (11) Sotheeswaran, S.: Sultanbawa, M. U. S.: Surendrakumar, S.: Balasubramaniam, S.; Bladon, P. J. Chem. Soc., Perkin Trans. 1 1985, 1807-1809
- (12) Sultanbawa, M. U. S.; Surendrakumar, S.; Bladon, P. Phy-(12) Suttainawa, W. C. S., Sutchartwallar, S., Eldoli, T. T., tochemistry **1987**, *26*, 799–801. (13) Coggon, P.; Janes, N. F.; King, F. E.; King, T. J.; Molyneux, R.
- J.; Morgan, J. W. W.; Sellars, K. J. Chem. Soc. **1965**, 406–409. (14) Madhav, R.; Seshadri, T. R.; Subramanian, G. B. V. Phytochem-

(15) Dayal, R. J. Ind. Chem. Soc. 1987, 64, 259.

mers from plants in the family Dipterocarpaceae exhibit diverse biological activities, including antibacterial,^{8,10,12} antifungal,^{6,17} and anti-HIV effects.⁴

As a part of an ongoing collaborative search for novel antineoplastic agents of plant origin, an ethyl acetate extract of the stems of Vatica diospyroides, collected in Thailand, exhibited significant cytotoxic activity against a number of human cancer cell lines. This plant has not been investigated previously and therefore was subjected to detailed laboratory investigation, involving bioassayguided chromatographic fractionation monitored by the KB cell line. We report herein a novel resveratrol tetramer, vatdiospyroidol (1), as a cytotoxic principle of the ethyl acetate extract of the stems of *V. diospyroides*. Another novel resveratrol tetramer, vaticaphenol A (2), was isolated as a noncytotoxic constituent. Five known compounds, bergenin, betulin, betulinic acid, mangiferonic acid, and resveratrol $3-O-\beta$ -D-glucopyranoside were isolated as noncytotoxic constituents of V. diospyroides when evaluated against the panel of cancer cell lines represented. The structures of 1 and 2 were elucidated using 2D NMR techniques such as ¹H-¹H COSY, ¹H-¹³C HETCOR, ¹H-¹³C HMQC, and ¹H-¹³C HMBC, and their relative stereostructures have been proposed using

- (17) Sotheeswaran, S.; Sultanbawa, M. U. S.; Surendrakumar, S.; Balasubramaniam, S.; Bladon, P. J. Chem. Soc., Perkin Trans. 1 1985, 159 - 162.
- (18) Sultanbawa, M. U. S.; Surendrakumar, S.; Wazeer, I. M. J. Chem. Soc., Chem. Commun. 1981, 1204-1206.

(19) Bisset, N. G.; Diaz-Parra, M. A.; Ehret, C.; Ourisson, G. Phytochemistry 1967, 6, 1395-1405.

(20) Bisset, N. G.; Diaz, M. A.; Ehret, C.; Ourisson, G.; Palmade, M.; Patil, F.; Pesnelle, P.; Streith, J. *Phytochemistry* **1966**, *5*, 865– 880.

(21) Bandaranayake, W. M.; Gunasekera, S. P.; Karunanayake, S.; Sotheeswaran, S.; Sultanbawa, M. U. S. Phytochemistry 1975, 14, 2043-2048.

- (22) Bisset, N. G.; Chavanel, V.; Lantz, J.-P.; Wolff, R. E. Phy-tochemistry 1971, 10, 2451-2463.
- (23) Bandaranayake, W. M.; Karunanayake, S.; Sotheeswaran, S.; Sultanbawa, M. U. S.; Balasubramaniam, S. *Phytochemistry* **1977**, *16*, 699 - 701
- (24) Gunawardana, Y. A. G. P.; Sultanbawa, M. U. S.; Balasubra-maniam, S. *Phytochemistry* **1980**, *19*, 1099–1102.
 - (25) Hota, R. K.; Bapuji, M. Phytochemistry 1993, 32, 466-468.

University of Illinois at Chicago.

istry 1967, 6, 1155-1156.

⁽¹⁶⁾ Saraswathy, A.; Purushothaman, K. K.; Patra, A.; Dey, A. K.; Kundu, A. B. Phytochemistry 1992, 31, 2561-2562.

the ¹H-¹H NOESY NMR technique and computer-aided molecular modeling. The structural characterization of 1 and 2 and the cytotoxic evaluation of the V. diospyroi*des* constituents are presented in this paper. This is the first report of cytotoxicity against a cancer cell line by a resveratrol oligomer.

Results and Discussion

Compound 1, obtained as a minor constituent, was deduced as having an elemental formula of $C_{56}H_{42}O_{12}$ by negative HRFABMS (m/z [M – H]⁻ 905.2638). A strong hydroxyl absorption band was observed at 3361 cm⁻¹ in the IR spectrum. The UV spectrum of 1 displayed an absorption maximum at 285 nm, consistent with the presence of one or more nonconjugated phenyl rings. The ¹H NMR spectrum of **1** showed eight ortho-coupled aromatic signals from four *p*-hydroxyphenyl groups at $\delta_{\rm H}$ 6.45/6.35, 6.65/7.01, 6.83/7.24, and 6.84/7.23. They were correlated to the ^{13}C NMR signals at δ_{C} 129.4/115.5 and 115.9 (C-3b and C-5b showed different ¹³C NMR signals), 115.5/129.9, 116.1/128.5, and 116.0/128.1, respectively, in the ¹H-¹³C HMQC NMR spectrum of **1**, indicating that this compound is a resveratrol tetramer.^{3-18,26-31} Characteristic benzylic proton signals typical of a diaryldihydrobenzofuran moiety were observed at $\delta_{\rm H}$ 4.56/5.61 and 4.93/5.42 in the ¹H NMR spectrum of 1 and showed one-bond correlations with the ¹³C NMR resonances at $\delta_{\rm C}$ 57.7/94.1 and 56.8/94.1, respectively, in the ¹H⁻¹³C HMQC NMR spectrum, thereby indicating the presence of two diaryl-dihydrobenzofuran units in the molecule. Four aliphatic methine functionalities appeared at $\delta_{\rm H}$ 3.10 (H-8d), 3.38 (H-7b), 4.00 (H-8b), and 4.17 (H-7d),

(30) Ishima, Y.; Ueno, Y. *Phytochemistry* 1993, *33*, 179–182.
(31) Ourtoule, J.-C.; Bourhis, M.; Vercauteren, J.; Theodore, N. *Tetrahedron Lett.* 1996, *37*, 4697–4700.

Figure 1. Energy-minimized stereostructure of vatdiospyroidol (1) (MM⁺ calculation using the HyperChem 4.0 molecular modeling program).

which correlated with the ^{13}C NMR resonances at δ_C 51.0 (C-8d), 49.6 (C-7b), 47.5 (C-8b), and 45.5 (C-7d), respectively. The carbon connectivities between the two diaryldihydrobenzofuran units in 1 were deduced from detailed analysis of the cross-peaks in the HMBC spectrum which correlated with these four aliphatic protons (Table 1). Further analysis of the HMBC NMR spectrum, together with the ¹H–¹H COSY NMR data, led to the structural skeleton proposed for 1. To determine the relative stereochemistry of 1, the NOESY NMR spectrum was analyzed with the assistance of computer-aided molecular modeling. From these data, the energy-minimized stereostructure of 1 (see Figure 1) showed dihedral angles of 76.15°, 82.70°, and 77.93° for H-7d/H-8d, H-7b/H-8d, and H-7b/H-8b, respectively, which corresponded to the expectation of a very small coupling constant in each case from the vicinal Karplus correlation graph.³² These computational calculations were compared to the actual coupling constants observed in the ¹H NMR spectrum for H-7d (δ_H 4.17, brs), H-8d (δ_H 3.10, brs), H-7b (δ_H 3.38, s), and H-8b ($\delta_{\rm H}$ 4.00, s), which all occurred as singlets with very small or no vicinal coupling at all observed. In the NOESY NMR spectrum of the molecule, H-8d exhibited a cross-peak with the coincident H-2b and H-6b signals. The latter signal, in turn, was found to exhibit NOE correlations with H-8b and H-7b, indicating that all of these protons were located in close proximity (Table 1). Proton-8d showed a NOE correlation with H-2d(6d), indicating the cis configuration of H-8d and ring D1. Protons-2d(6d) also correlated with H-7b in the NOESY spectrum of **1**, providing further evidence for the α orientation of ring D1. Protons 8a and 8b could be proposed as having a cis orientation to each other from the observation of a mutual cross-peak in the NOESY NMR spectrum, whereas H-8d and H-8c were assigned as trans due to the lack of any observed NOE correlation between them. In addition, the configurations of both H-7a/H-8a and H-7c/H-8c were determined as trans from the cross-peaks corresponding to H-7a/H-10a(14a), H-8a/ H-2a(6a), H-7c/H-10c(14c), and H-8c/H-2c(6c) in the NOESY spectrum. As a result, structure 1 was proposed for the novel tetrastilbenoid, vatdiospyroidol. The structure was supported further by the methylation of the 10 phenolic hydroxyls present in 1 to form 3. All of the ¹H

⁽²⁶⁾ Korhammer, S.; Reniero, F.; Mattivi, F. Phytochemistry 1995, 38, 1501-1504.

⁽²⁷⁾ Kawabata, J.; Mishima, M.; Kurihara, H.; Mizutani, J. Phytochemistry 1995, 40, 1507-1510.

⁽²⁸⁾ Kurihara, H.; Kawabata, J.; Ichikawa, S.; Mishima, M.; Mi-zutani, J. *Phytochemistry* **1991**, *30*, 649–653.

⁽²⁹⁾ Ishima, Y.; Kamijou, A.; Moritani, H.; Namao, K.-I.; Ohizumi, Y. J. Org. Chem. 1993, 58, 850-853.

⁽³²⁾ Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectroscopic Identification of Organic Compounds, 5th ed.; John Wiley & Sons: New York, 1991.

Table 1. NMR Data for Vatdiospyroidol (1) (in Acetone-d₆)

Seo	et	al

carbon	$\delta_{\rm C}$	$\delta_{ m H}$ (mult., J Hz)	¹ H- ¹ H COSY	¹ H- ¹ H NOESY	¹ H- ¹³ C HMBC		
1a	134.2 (s)						
2a(6a)	128.1 (d)	7.23 (d, 8.5)	H-3a(5a)	H-7a, H-8a	C-2a(6a), C-3a(5a), C-4a, C-7a		
3a(5a)	116.0 (d)	6.84 (d, 8.5)	H-2a(6a)	OH-4a	C-1a, C-3a(5a)		
4a	158.1 (s)						
7a	94.1 (d)	5.42 (d, 6.5)	H-8a	H-2a(6a), H-10a(14a)	C-1a, C-2a(6a), C-8a, C-9a, C-13b		
8a	56.8 (d)	4.93 (d, 6.5)	H-7a	H-2a(6a), H-10a(14a)	C-1a, C-7a, C-9a, C-10a(14a), C-13b, C-14b		
9a	148.3 (s)						
10a(14a)	107.4 (d)	6.40 (d,2.0)		H-8a, H-7a, OH-11a (13a), H-8b	C-8a, C-12a, C-10a(14a), C-11a(13a)		
11a(13a)	159.9 (s)						
12a	101.8 (d)	6.36 (t, 2.0)		OH-11a (13a)	C-10a(14a), C-11a(13a)		
1b	134.2 (s)						
2b(6b)	129.4 (d)	6.35 (d, 8.4)		H-7b, H-8b, H-8d	C-2b(6b), C-3b, C-4b, C-5b, C-7b		
3b	115.5 (d) ^a	6.45 (d, 8.4) ^c		OH-4b	C-1b, C-3b, C-4b, C-5b		
5b	115.9 (d)	6.45 (d, 8.4) ^c					
4b	155.7 (s)						
7b	49.6 (d)	3.38 (s)		H-2b(6b), H-8b, H-2d(6d)	C-1b, C-2b(6b), C-8b, C-7d, C-8d, C-9d, C-10d		
8b	47.5 (d)	4.00 (s)		H-8a, H-10a (14a), H-2b(6b), H-7b	C-1b, C-7b, C-9b, C-10b, C-14b, C-8d, C-9d, C-10d, C-11d		
9h	144.0(s)				0 00, 0 100, 0 110		
10b	114 6 (d)						
11b	157.8(s)						
12b	95 8 (d)	6 16 (s)		OH-11b	C-10h C-11h C-14h		
12b	$159.8 (s)^{b}$	0.10 (3)			0 100, 0 110, 0 110		
14b	100.0(s) 117.8(s)						
10	133 A (s)						
2c(6c)	133.4(3) 128 5 (d)	7 24 (d 8 5)	$H_3c(5c)$	H-7c H 8c	$C_{3c}(5c)$		
2c(0c)	120.3 (u) 116 1 (d)	6 83 (d 8 5)	$H_{2c}(6c)$	OH_{Ac}	$C_{-1c} = C_{-3c}(5c) = C_{-4c}$		
3C(3C)	158.1 (c)	0.83 (u, 8.3)	11-20(00)	011-40	C-11, C-31(31), C-41		
40 7c	130.1(S)	5 61 (d. 77)	H_8c	$H_{2c}(6c)$ H_{8c} $H_{10c}(14c)$	$C_{-1c} = C_{-2c}(6c) = C_{-8c} = C_{-9c} = C_{-13d}$		
80	577(d)	J.01 (u, 7.7)	11-00 LI 70	$H_{20}(6c)$ H_{7c} $H_{10c}(14c)$	$C_{10} = C_{20} = C_{10} = C$		
	145.0 (c)	4.30 (u, 7.7)	11-70	11-20(00), 11-70, 11-100(140)	$C^{-1}C, C^{-7}C, C^{-9}C, C^{-1}OC(14C), C^{-1}Su, C^{-1}4u$		
$\frac{90}{100}$	143.3 (S) 108 1 (d)	6 55 (d 2 5)		$U_{70} U_{80} \cap U_{110}(120)$	$C P_{0} = C 11_{0}(12_{0}) C 12_{0}$		
100(140) 110(120)	100.1 (u) 150.9 (c) ^h	0.55 (u, 2.5)		п-7с, п-өс, Оп-11с(13с)	C-8C, C-11C(13C), C-12C		
110(130)	109.0 (S) ⁻	6 22 (+ 2 5)		OU(110(120))	$C_{100}(14_0)$ $C_{110}(12_0)$		
120	102.2 (u)	0.52 (l, 2.3)		OH-110(130)	C-10c(14c), C-11c(13c)		
10 2d(6d)	130.3 (S) 120.0 (d)	701 (d 85)	LI 24(5d)	U 75 U 74 U 94	C 2d (6d) C 2d(5d) C 4d C 7d		
2d(5d)	129.9 (0) 115.5 (d)a	7.01 (0, 0.3)	H-30(30)		C - 2u (0u), C - 3u(3u), C - 4u, C - 7u		
30(30) 4d	$115.5 (u)^{4}$	0.05 (u, o.5)	H-20(00)	OH-4u	C-10, C-30(30), C-40		
40 7d	150.0(S)	4.17 (brc)		U 94(64) U 94 OU 11b	C 7 b C 0 b C 10 b C 11 b C 1 d C 2 d (c d) C 2 d		
/U	43.3 (d)	4.17 (DIS)		$\Pi - 2u(0u), \Pi - 0u, U\Pi - 11D$	C = TD, C = 3D, C = 10D, C = 11D, C = 10, C = 20, C = 10D, C = 1		
00	51.0(0)	3.10 (DrS)		H-2D(0D), H-20(00), H-70	C-1D, C-7D, C-8D, C-10D, C-1d, C-7d, C-9d C-10d		
90 10J	143.1 (S)						
100	128.2 (S)						
110	155.4 (S)	0.19(x)		011 11 1			
120	95.9 (d)	0.12 (S)		OH-110	C-10a, C-11a, C-13a, C-14a		
130	100.9 (S)						
140	118.5 (S)	0.40 (-)		$\mathbf{U} = (\mathbf{r})$	$C = \langle \Gamma_{-} \rangle C = \langle I_{-} \rangle$		
OH-4a		8.42 (S)		H-3a(5a)	C-3a(5a), C-4a		
OH-11a(13a)		0.24 (S)		$H^{-1}Ua(14a), H^{-1}Za$	C = 10a(14a), C = 11a(13a), C = 12a		
UH-4D		7.79 (S)		п-эр(Эр)	(-30, (-40, (-30))		
UH-IID		7.5U (S)		H-1ZD, H-70	C = 100, C = 110, C = 120		
UH-40		ð.44 (S)		H-3C(3C)	U-3C(3C), U-4C		
UH-11c(13c)		8.32 (S)		H-1UC(14C), H-1ZC	U-10c(14c), U-11c(13c), U-12c		
UH-4d		7.95 (s)		H-30(50)	U-30(5d), U-4d		
UH-IId		8.22 (s)		H-120	U-10a, U-11a, U-12a		
a^{-c} Overlanning signals							

Overlapping signals.

and ¹³C NMR signals of decamethylvatdiospyroidol (3) were assigned unambiguously from the ¹H-¹H COSY, ¹H-¹H NOESY, ¹H-¹³C HMQC, and ¹H-¹³C HMBC NMR spectral data.

A negative molecular ion $[M - H]^-$ at m/z 905.2632 was observed in the HRFABMS of compound 2, suggesting a molecular formula of C₅₆H₄₂O₁₂. In the IR spectrum of $\mathbf{2}$, a strong absorption band at 3366 cm⁻¹ indicated the presence of several hydroxyl groups, and its UV spectrum showed an absorption maximum at 284 nm, consistent with there being one or more substituted phenyl rings in the molecule. The ¹H NMR spectrum of 2 exhibited four sets of ortho-coupled aromatic signals at $\delta_{
m H}$ 6.50/ 6.40, 6.69/7.16, 6.77/7.19, and 6.78/7.22, resulting from the presence of four *p*-hydroxyphenyl groups, which showed one-bond connectivities with ¹³C NMR resonances at δ_C 129.2/115.3 and 115.4 (C-3c and C-5c showed different ¹³C NMR signals), 115.9/130.6, 116.0/128.2, and 115.8/130.1, respectively, in the ¹H-¹³C HETCOR NMR spectrum. These data were in accordance with compound 2 also being a resveratrol tetramer. Six signals for metacoupled aromatic protons appeared at $\delta_{\rm H}$ 6.27 (H-12a), 6.28 (H-12d), 6.11 (H-14a), 6.19 (H-12c), 6.47 (H-14c), and 6.10 (H-10d and H-14d), and showed cross-peaks with the ¹³C NMR signals at $\delta_{\rm C}$ 101.5, 102.1, 105.6, 96.4, 95.5, 106.9, and 107.3, respectively, in the HETCOR spectrum of **2**. Four aliphatic methine groups at $\delta_{\rm H}$ 4.43/5.76 and 4.68/5.37 were correlated to the ¹³C NMR resonances at $\delta_{\rm C}$ 48.8/90.3 and 57.4/94.5 and were attributed to two diaryl-dihydrobenzofuran moieties. Another four aliphatic ¹H NMR signals, at $\delta_{\rm H}$ 3.10 (H-8b), 4.09 (H-7c), 4.55 (H-8c), and 5.20 (H-7b), exhibited one-bond connec-

		Table 2.	Tunic Data	ior varicaphenor A (2) (in Ace	
carbon	δ_{C}	$\delta_{ m H}$ (mult., $J{ m Hz}$)	¹ H– ¹ H COSY	¹ H- ¹ H NOESY	¹ H- ¹³ C HMBC
1a	130.7 (s)				
2a(6a)	130.1 (d)	7.22 (d, 8.5)		H-7a, H-8a, H-14a	C-2a(6a), C-4a, C-7a
3a(5a)	115.8 (d)	6.78 (d, 8.5)		OH-4a	C-1a, C-3a(5a), C-4a
4a	158.5 (s)				
7a	90.3 (d)	5.76 (d. 11.0)	H-8a	H-2a(6a). H-14a	C-2a(6a), C-8a, C-9a
8a	48.8 (d)	4.43 (d, 11.0)	H-7a	H-2a(6a), H-2b(6b)	C-1a, C-7a, C-9a, C-10b
9a	141.7 (s)				
10a	124.4 (s)				
11a	155.6 (s)				
12a	101.5 (d)	6.27 (d. 1.8)		OH-11a	C-10a, C-11a, C-13a, C-14a
13a	156.6(s)	0127 (d, 110)		011 114	e 164, e 114, e 164, e 114
14a	105.6 (d)	6 11 (d 1 8)		$H_{2a}(6a) \cap H_{13a}$	C-8a C-10a C-12a C-13a
1h	133.4 (c)	0.11 (u, 1.0)		11 24(04), 011 104	0 00, 0 100, 0 120, 0 100
2b(6b)	130.4 (3) 130.6 (d)	7 16 (d. 8 3)		H-7h H-7c	C-2h(6h) C-4h C-7h
2b(0b) 3b(5b)	1150.0 (d)	6 60 (d 8 3)		OH-4b	$C_{1} = C_{2} = C_{1} = C_{1$
4b	155.8(c)	0.00 (u, 0.0)		011-40	C-10, C-30(30), C-40
4D 7b	133.0 (S) 26 0 (d)	5 20 (+ 2 0)		\mathbf{U} 2b(Cb) \mathbf{U} 2b \mathbf{U} 2c(Cc)	C = 0 + C = 10 + C = 11 + C = 2h(Gh)
70	30.9 (u)	5.20 (L, 5.0)		$\Pi - 2D(0D), \Pi - 0D, \Pi - 2C(0C),$	C = 9a, C = 10a, C = 11a, C = 10, C = 20(00),
01	FO 1 (J)	$0.10 (h_{11} + 11.7)$	11 7	UH-11a	
8D Ob	53.1 (d)	3.10 (Drd, 11.5)	H-/C	H-7D, H-2C(6C)	C-7D, C-9D
9D	143.1 (S)				
10b	115.6 (S)				
110	158.7 (s)	0.04()		011 (0)	
12b	96.4 (d)	6.04 (s)		OH-13b	C-10b, C-11b, C-13b, C-14b
13b	154.8 (s)				
14b	122.1 (s)				
1c	131.3 (s)				
2c(6c)	129.2 (d)	6.40 (d, 8.5)		H-7b, H-8b, H-7c, H-8c	C-2c(6c), C-4c, C-7c
3c(5c)	115.3 (d), 115.4 (d)	6.50 (d, 8.5)		OH-4c	C-1c, C-2c(6c), C-3c(5c), C-4c
4c	156.2 (s)				
7c	57.5 (d)	4.09 (t, 11.5)	H-8b, H-8c	H-2b(6b), H-2c(6c), H-14c	C-7b, C-8b, C-1c, C-2c(6c), C-8c, C-9c
8c	49.1 (d)	4.55 (d, 11.5)	H-7c	H-2c(6c), H-10d(14d)	C-9b, C-13b, C-14b, C-1c, C-7c, C-9c, C-10c, C-14c
9c	141.6 (s)				
10c	123.3 (s)				
11c	161.5 (s)				
12c	95.5 (d)	6.19 (d, 2.0)		OH-13c	C-10c, C-11c, C-13c, C-14c
13c	159.3 (s)				
14c	106.9 (d)	6.47 (d, 2.0)		H-7c, OH-13c	C-8c, C-10c, C-12c, C-13c
1d	134.5 (s)				
2d(6d)	128.2 (d)	7.19 (d, 8.8)		H-7d, H-8d	C-2d(6d), C-4d, C-7d
3d(5d)	116.0 (d)	6.77 (d, 8.8)		OH-4d	C-4d, C-1d, C-3d(5d)
4d	157.9 (s)				
7d	94.5 (d)	5.37 (d, 5.5)		H-2d(6d), H-10d(14d)	C-10c, C-11c, C-1d, C-2d(6d), C-8d, C-9d
8d	57.4 (d)	4.68 (d, 5.5)		H-2d(6d), H-10d(14d), OH-13b	C-9c, C-10c, C-11c, C-1d, C-7d, C-10d(14d)
9d	147.9 (s)				
10d(14d)	107.3 (d)	6.10 (brs)		H-8c, H-7d, H-8d, OH-11d(13d)	C-8d, C-10d(14d)
11d(13d)	159.7 (s)				
12d	102.1 (d)	6.28 (t, 2.5)		OH-11d(13d)	C-10d(14d), C-11d(13d)
OH-4a		8.61 (s)			C-3a(5a), C-4a
OH-11a(4b)		8.28 (s)		H-12a, H-3b(5b). H-7b	C-10a, C-11a, C-3b(5b). C-4b
OH-13a		8.16 (s)		H-14a	C-12a, C-13a, C-14a
OH-13b		7.61 (s)		H-12b, H-8d	C-12b, C-13b, C-14b
OH-4c		8.02 (s)		H-3c(5c)	C-3c(5c), $C-4c$
OH-13c		8.28 (s)		H-12c H-14c	C-12c, C-13c, C-14c
OH-4d		8.50 (s)		H-3d(5d)	C-3d(5d), C-4d
OH-11d(13d)		8.12 (s)		H-12d	C-10d(14d), C-11d(13d), C-12d

 Table 2.
 NMR Data for Vaticaphenol A (2) (in Acetone-d₆)

tivities in the HETCOR spectrum with the ¹³C NMR signals at $\delta_{\rm C}$ 53.1 (C-8b), 57.5 (C-7c), 49.1 (C-8c), and 36.9 (C-7b), respectively. ¹H–¹H COSY and ¹H–¹³C HMBC NMR techniques (Table 2) were used to determine the carbon skeleton between the two diaryl-dihydrobenzofuran moieties of **2**. The relative stereochemistry of **2** was proposed on the basis of the analysis of the NOESY NMR spectrum and the computer-aided energy-minimized stereostructures obtained (see Figure 2). The H-7b signal at $\delta_{\rm H}$ 5.20 showed a cross-peak with H-8b at $\delta_{\rm H}$ 3.10, indicating a cis orientation for these two protons. This was supported by a computer-aided calculation for the dihedral angle (72.35°) between H-7b (α) and H-8b (α), which would result in a coupling constant with a small value according to the vicinal Karplus correlation graph.

This was consistent with the data obtained from the ¹H NMR spectrum which displayed a $J_{7b,8b}$ of 3.0 Hz. In turn, the dihedral angle between H-8b (α) and H-7c (β) was computed as 165.03°, which corresponds to a J value of 11.5 Hz in the vicinal Karplus correlation graph.³² The signals for H-8b and H-7c at $\delta_{\rm H}$ 3.10 (1H, brd, J = 11.5 Hz) and 4.09 (1H, t, J = 11.5 Hz), respectively, did not show any NOE correlation with each other in the NOESY NMR spectrum of **2**, supporting their trans configuration. Similarly, H-7c and H-8c were also assigned as trans according to their coupling constants (J = 11.5 Hz) and the absence of a NOE cross-peak in the NOESY spectrum. Further evidence was provided by the NOE correlation between H-7c and H-14c, indicating β orientation of the ring C2. Ring D2 was proposed as having an α

Figure 2. Energy-minimized stereostructure of vaticaphenol A (**2**) (MM⁺ calculation using the HyperChem 4.0 molecular modeling program).

orientation by the NOE correlation observed between H-8c and H-10d(14d). The vicinal coupled aliphatic protons [H-7a ($\delta_{\rm H}$ 5.76, 1H, d, J = 11.0 Hz)/H-8a ($\delta_{\rm H}$ 4.43, 1H, d, J = 11.0 Hz) and H-7d ($\delta_{\rm H}$ 5.37, 1H, d, J = 5.5Hz)/H-8d ($\delta_{\rm H}$ 4.68, 1H, d, J = 5.5 Hz)] from the two diaryldihydrobenzofuran rings were assigned as trans since the NOESY spectrum showed correlations of H-8a/H-2a(6a), H-7d/H-10d(14d), and H-8d/H-2d(6d). The large coupling constant for H-7a/H-8a (J = 11.0 Hz) possibly results from being adjacent to a seven-membered ring, and the coupling constant observed was consistent with reported data for this functionality.³³ The coupling constant of H-7d and H-8d (5.5 Hz) was typical for the trans protons in a diaryl-dihydrobenzofuran ring not connected to another ring.³⁴ Other NOESY NMR data, as summarized in Table 2, are in accordance with the proposed stereostructure of compound 2.

Further proof for the structure of compound 2 was obtained on the methylation of its 10 hydroxyl groups. Decamethylvaticaphenol A (4) exhibited a molecular ion peak at m/z 1046 in its LREIMS, consistent with an elemental formula of C₆₆H₆₂O₁₂. Unambiguous assignments for the ¹H and ¹³C NMR signals for 4 were performed using COSY, NOESY, HMQC, and HMBC NMR experiments, supporting the stereochemistry of compound 2 as proposed. However, compound 4 displayed a positive optical rotation value (+33°), whereas 2 showed a negative value (-29°) , and there were a number of Cotton effect differences observed between these two compounds in their CD spectra. In the ¹H-¹H NOESY NMR spectrum of 4, a correlation between H-8c and H-8d was observed, whereas compound 2 revealed a cross-peak between H-8c and H-10d(14d) in its NOESY spectrum. These observations suggested that the single bond between C-8c and C-9c of compound 2 was slightly rotated by methylation without a change of configuration at C-8c, which may have caused changes in the optical rotation and CD spectrum of 4 relative to 2. A possible explanation for these discrepancies was obtained from observed differences between 2 and 4 in the ¹H NMR values for H-2c and H-6c, and H-3c and H-5c. Thus, the ¹H NMR signal for H-2c and H-6c ($\delta_{\rm H}$ 6.40) of **2** appeared at a more

shielded region than H-3c and H-5c ($\delta_{\rm H}$ 6.50) of **2**, whereas the methylated product **4** displayed the H-2c and H-6c signal ($\delta_{\rm H}$ 6.58) in a more deshielded region than H-3c and H-5c ($\delta_{\rm H}$ 6.90). These chemical shift differences are consistent with a change in the steric environment of ring C1 of **2** on its methylation to **4**.

A known resveratrol monomer, (*E*)-resveratrol 3- $O-\beta$ -D-glucopyranoside³⁵ was isolated from the ethyl acetate extract of *V. diospyroides* in the present investigation. This is the first report of a resveratrol monomer from a plant of the Dipterocarpaceae, providing some evidence that the tetrastilbenes are biosynthesized from resveratrol monomers. A known isocoumarin, bergenin (**5**),^{36,37} was also isolated, and its detailed ¹H NMR assignments and a minor revision of the ¹³C NMR assignments for C-13 (δ_C 73.7) and C-14 (δ_C 79.8) were carried out from the observation of the HMBC NMR correlations between the hydroxyl protons and their two- and three-bonded carbons. Three triterpenoids, betulin,³⁸ betulinic acid,^{38,39}

and mangiferonic acid^{40,41} were identified by comparison of spectral data with literature values. The presence of betulinic acid was predicted using a published LC-MS dereplication method,⁴² in which the ethyl acetate extract of the stems of *V. diospyroides* was evaluated using the ZR-75-1 (human hormone-dependent breast cancer) assay, although this cell line was not finally chosen for activity-guided fractionation. The masses found in the wells with biological activity were at m/z 456, 460, and 470, of which that at m/z 456 corresponded to the molecular ion of betulinic acid.^{38,39}

Biological Activity. All of the isolates and methylated derivatives obtained in the present investigation were evaluated for their cytotoxic activity against several human cancer cell lines.⁴³ Compound **1** (vatdiospyroidol) was found to be the only active principle of the ethyl acetate extract of *V. diospyroides* stems and displayed its most potent cytotoxicity against the oral epidermoid carcinoma (KB, EC₅₀ 1.0 μ g/mL), colon cancer (Col2, EC₅₀ 1.9 μ g/mL), and breast cancer (BC1, EC₅₀ 3.8 μ g/mL) cell lines in the in vitro tumor cell panel. This appears to be the first occasion in which significant cytotoxic activity against a human cancer cell line has been reported for a

(37) Taneyama, M.; Yoshida, S.; Kobayashi, M.; Hasegawa, M. Phytochemistry **1983**, *22*, 1053–1054.

- (39) Tiwari, K. P.; Srivastava, D. D.; Srivastava, S. *Phytochemistry* **1980**, *19*, 980–981.
- (40) Cheung, H. T.; Wong, C.-S.; Yan, T. C. *Tetrahedron Lett.* **1969**, *58*, 5077–5080.
- (41) Cabrera, G. M.; Gallo, M.; Seldes, A. M. J. Nat. Prod. **1996**, 59, 343–347.
- (42) Constant, H. L.; Beecher, C. W. W. Nat. Prod. Lett. **1995**, 6, 193–196.
- (43) Likhitwitayawuid, K.; Angerhofer, C. K.; Cordell, G. A.; Pezzuto, J. M.; Ruangrungsi, N. J. Nat. Prod. **1993**, 56, 30–38.

⁽³³⁾ Engler T. A.: Gfesser, G. A.: Draney, B. W. J. Org. Chem. 1995, 60, 3700–3706.

⁽³⁴⁾ Reniero, F.; Rudolph, M.; Angioni, A.; Bernreuther, A.; Cabras, P.; Mattivi, F. *Vitis* **1996**, *35*, 125–127.

⁽³⁵⁾ Hanawa, F.; Tahara, S.; Mizutani, J. *Phytochemistry* **1992**, *31*, 3005–3007.

⁽³⁶⁾ Ramaia, P. A.; Row: L. R.; Reddy, D. S.; Anjaneyulu, A. S. R.; Ward, R. S.; Pelter, A. *J. Chem. Soc., Perkin Trans. I* **1979**, 2313– 2316.

⁽³⁸⁾ Sholichin, M.; Yamasaki, K.; Kasai, R.; Tanaka, O. *Chem. Pharm. Bull.* **1980**, *28*, 1006–1008.

resveratrol tetramer. Compound **3** (decamethylvatdiospyroidol) did not show any significant activities in the cell lines tested in this study, thereby pointing out that the hydroxyl groups in compound **1** play an important role in mediating the cytotoxic activity of **1**. All other compounds were found to be inactive in the human cancer cell lines tested. It is to be noted that betulinic acid was demonstrated in our earlier work to be selectively inhibitory to melanoma cells and also showed highly effective tumor growth inhibition in athymic mice bearing human melanoma.⁴⁴ However, the presently used cancer cell panel did not include a melanoma cell line.

Experimental Section

General Methods. ¹H NMR spectra were obtained at 500 MHz, and ¹³C NMR spectra were run at 90.8 or 125 MHz. TMS was used as internal standard. ¹H–¹H COSY, ¹H–¹H NOESY, and ¹H–¹³C HETCOR NMR experiments were run at 300 MHz and ¹H–¹³C HMQC and ¹H–¹³C HMBC NMR experiments were recorded at 500 MHz. Energy-minimized stereostructures were obtained using HyperChem 4.0 software produced by Hypercube Inc. (Waterloo, Ontario, Canada).

Plant Material. The stems of *V. diospyroides* Sym. were collected at Nong Thong Wildlife Sanctuary in Kiansaa, Surat Thani, Thailand in May 1993 and were identified by one of us (T.S.). A voucher specimen (A2531) has been deposited in the Field Museum of Natural History, Chicago, IL.

Extraction and Isolation. The dried stems (1.5 kg) of V. *diospyroides* were extracted three times with MeOH ($\bar{3} \times 7.5$ L) overnight at room temperature. The solvent was evaporated in vacuo to afford a concentrated MeOH extract, which was then diluted with H₂O (0.9 L) to give an aqueous MeOH solution (1.0 L). The aqueous solution was defatted with hexanes (2 \times 1.0 L) and subsequently partitioned with EtOAc $(3 \times 1.2 \text{ L})$. The combined EtOAc layers were concentrated to dryness in vacuo to provide a residue (D001, 59.4 g), and the aqueous fraction was dried to give extract D002 (40 g). The EtOAc extract (D001), exhibited significant cytotoxic activity against several human cancer cell lines, while the aqueous fraction was inactive. The EtOAc extract of V. diospyroides stems was evaluated by dereplication analysis, using a previously established protocol, with published chromatographic conditions,⁴² with the ZR-75-1 (human hormone-dependent breast cancer) cell line used to monitor cytotoxic activity.⁴³ For chromatography, the extract (59.4 g) was mixed with silica gel (60 g, 70-230 mesh), and subjected to vacuum-liquid chromatography (VLC) [glass column (15 \times 15 cm) packed with dried silica gel (560 g, 70-230 mesh), using CHCl₃-MeOH (19:1 to 4:1, gradient mixtures) and finally MeOH for elution, with cytotoxicity monitored using a human oral epidermoid carcinoma (KB) cell line. Of six major fractions obtained by VLC (F003-F008), fractions F004 and F005 (eluted with CHCl₃-MeOH, 10:1 to 17:3), showed significant cytotoxic activity against the KB cell line (EC₅₀ 6.9 and 7.8 µg/mL, respectively).

Bergenin was precipitated from fractions F004 and F005 in MeOH, and recrystallized from MeOH as cubic white crystals (700 mg, 0.064% w/w). After bergenin was separated from F004, the residue (9.0 g) was mixed with silica gel (9.0 g, 70-230 mesh), dried, and subjected to flash column chromatography [glass column (4 \times 40 cm) packed with silica gel (80 g, 230-400 mesh)], eluted with CHCl₃-MeOH (17:3 to 1:1, gradient mixtures) and MeOH, to afford fractions F019-F028. Fraction F026 (5 g, eluted with CHCl₃-MeOH, 5:1) was further separated by flash column chromatography using hexane-acetone (1:1), affording fractions F045-F061. Fraction F053 (650 mg) was subjected to additional flash column chromatography using CHCl3-MeOH-H2O (7:1:0.01) as eluent, producing fractions F062-F068. F066 (32 mg) showed a single spot with R_f 0.32 using hexane-acetone-MeOH (3:3: 1) as the TLC solvent system. However, this fraction displayed two spots [major spot at $R_f 0.25$ (2); minor spot at $R_f 0.35$ (1)] by reversed-phase TLC (RP-18) developed with MeOH-H₂O (1:1). Fraction F071 (480 mg), which showed a similar TLC profile to fraction F066, was obtained from F005 by the same column chromatographic procedure used for F066. Fraction F066 was dissolved in MeOH (1 mL) and subjected to semipreparative HPLC [column YMC Pack, ODS-AQ, 250×20 mm I.D., C₁₈, S-5 μm, 120 Å; guard column YMC Guard Pack, ODS-AQ, 50 \times 20 mm I.D.; solvent MeOH-H₂O, 4.5:5.5; flow rate 4.5 mL/min) to afford the two pure isolates $\mathbf{1}$ ($t_R \mathbf{40}$ min) and **2** (t_R 50 min). Repetition of this method with fraction F071 provided additional amounts of compounds 1 and 2 (17 mg, 0.0012% w/w, and 90 mg, 0.006% w/w, respectively). F082, fractionated from F005 (10.0 g; eluted with hexane-acetone, 1:1), was further separated into fractions F087-F092 by column chromatography [glass column (3×40 cm) packed with silica gel (150 g, 230-400 mesh) slurry] using CHCl₃-MeOH-H₂O (20:3:0.01) as the solvent system. Fraction F089 (0.055 g) was subjected to repeated reversed-phase (RP-18) preparative TLC using MeOH $-H_2O$ (6:5) as the developing solvent system to afford (*E*)-resveratrol $3-O-\beta$ -D-glucopyranoside (5.0 mg, 0.0004% w/w). Fraction F003 (6 g), mixed with silica gel (5 g, 70-230 mesh), was subjected to flash column chromatography (glass column 4 \times 40 cm; packed with silica gel 230-400 mesh) and eluted with hexane-acetone (10:1 to 1:1, gradient mixtures), and finally washed with MeOH to afford fractions F009-F018. Betulin (3.1 mg, 0.0002% w/w) was isolated from fraction F033 by precipitation in MeOH. Betulinic acid (5.4 mg, 0.0004% w/w) was obtained as a white powder from fraction F035 in MeOH. Fraction F040 was washed with MeOH to afford mangiferonic acid (5.8 mg, 0.0004% w/w).

Vatdiospyroidol (1): white amorphous powder (H₂O); mp > 300 °C (dec); $[\alpha]_D - 67^\circ$ (*c* 0.10, MeOH); UV (MeOH) λ_{max} (log ϵ) 298 (s, 3.9), 285 (4.0), 278 (s, 4.0), 239 (4.4) nm; IR (film) ν_{max} 3361, 2922, 2359, 2339, 1613, 1514, 1454, 1366, 1235, 1161, 1078, 1001, 833, 693, 540 cm⁻¹; ¹H NMR (500 MHz, acetone-*d*₆), see Table 1; ¹³C NMR (125 MHz, acetone-*d*₆), see Table 1; FABMS (70 eV) *m*/*z* [MH]⁺ 907 (2), 906 (1), 448 (1), 337 (11), 315 (11), 253 (9), 225 (10), 207 (11), 192 (14), 175 (19), 128 (16), 119 (38), 117 (41), 115 (58), 101 (100); ESIMS *m*/*z* [M - H]⁻ 905.6, [M/2 - H]⁻ 452.5; HRFABMS *m*/*z* [M - H]⁻ 905.2638 (calcd for C₅₆H₄₁O₁₂, 905.2598).

Vaticaphenol A (2): white amorphous powder (H₂O); mp > 300 °C (dec); $[\alpha]_D -29^\circ$ (*c* 0.10, MeOH); $[\alpha]_D -27^\circ$ (*c* 0.10, acetone); CD (*c* 0.12 μ M, MeOH) $\Delta \epsilon_{293} + 4.58$, $\Delta \epsilon_{282} + 19.40$, $\Delta \epsilon_{240} -90.54$, $\Delta \epsilon_{229} + 6.61$, $\Delta \epsilon_{221} -12.57$, $\Delta \epsilon_{213} -8.05$; UV (MeOH) λ_{max} (log ϵ) 284 (4.2), 241 (4.3) nm; IR (film) ν_{max} 3366, 2926, 1615, 1511, 1454, 1362, 1337, 1242, 1173, 1007, 833 cm⁻¹; ¹H NMR (500 MHz, acetone-*d*₆), see Table 2; ¹³C NMR (75 MHz, acetone-*d*₆), see Table 2; FABMS (70 eV) *m/z* [MH]⁺ 907 (1), 906 (1), 335 (1), 313 (1), 256 (1), 207 (5), 191 (4), 189 (2), 166 (2), 150 (2), 149 (100), 148 (1), 133 (17), 129 (13), 127 (2), 116 (1), 115 (3); HRFABMS *m/z* [M - H]⁻ 905.2632 (calcd for C₅₆H₄₁O₁₂, 905.2598).

Bergenin (5): physical and spectral data were comparable with literature values;^{36,37} ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.20 (1H, ddd, J = 9.8, 9.3, and 5.9 Hz, H-12), 3.44 (1H, ddd, J = 11.5, 7.0, and 5.2 Hz, H-16a), 3.57 (1H, ddd, J = 9.8, 7.0, and 2.0 Hz, H-11), 3.65 (1H, dt, J = 9.3 and 5.7 Hz, H-13), 3.78 (3H, s, OCH₃), 3.84 (1H, ddd, J = 11.5, 5.2, and 2.0 Hz, H-16b), 4.00 (1H, t, J = 9.3 Hz, H-14), 4.92 (1H, t, J = 5.2 Hz, OH-16), 4.98 (1H, d, J = 5.7 Hz, OH-13), 6.99 (1H, s, H-3), 8.45 (1H, s, OH-6), 9.76 (1H, s, OH-4); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 59.9 (q, C-15), 61.1 (t, C-16), 70.7 (d, C-12), 72.1 (d, C-9), 73.7 (d, C-13), 79.8 (d, C-14), 81.8 (d, C-11), 109.5 (d, C-3), 116.0 (s, C-7), 118.1 (s, C-8), 140.6 (s, C-5), 148.1 (s, C-6), 151.0 (s, C-4), 163.4 (s, C-2).

Betulin: physical and spectral data were comparable with literature values. $^{\scriptscriptstyle 38}$

Betulinic acid: physical and spectral data were comparable with literature values.^{38,39}

Mangiferonic acid: physical and spectral data were comparable with literature values.^{40,41}

(*E*)-Resveratrol 3-*O*-β-D-glucopyranoside: physical and spectral data were comparable with literature values.³⁵

Decamethylvatdiospyroidol (3). Compound 1 (7 mg) was treated with dimethyl sulfate (0.1 mL) and potassium carbonate (100 mg) in dried acetone (7 mL) under reflux for 24 h. Compound $\mathbf{\tilde{3}}$ (decamethylvatdiospyroidol, 3.4 mg) was purified by preparative TLC with hexanes–EtOAc (1:1, R_f 0.45): white powder (MeOH), mp 137–138 °C; [α]_D –23° (c 0.1, CHCl₃); UV (MeOH) $\lambda_{\rm max}$ (log $\hat{\epsilon}$) 298 sh (3.9), 283 (4.0), 276 sh (4.0), 231 (4.8) nm; IR (film) v_{max} 2918, 2849, 2353, 1614, 1568, 1516, 1456, 1250, 1157, 1101, 1068 cm⁻¹; ¹H NMR (500 MHz, acetone-d₆) δ 3.10 (1H, brs, H-8d), 3.34 (1H, s, H-7b), 3.44 (3H, s, OCH₃-11b), 3.58 (3H, s, OCH₃-11d), 3.62 (3H, s, OCH₃-4b), 3.70 (3H, s, OCH₃-4d), 3.80 (9H, s, OCH₃-4c, OCH₃-11c and OCH₃-13c), 3.82 (9H, s, OCH₃-4a, OCH₃-11a and OCH₃-13a), 4.06 (1H, s, H-8b), 4.15 (1H, brs, H-7d), 4.76 (1H, d, J = 7.8 Hz, H-8c), 4.93 (1H, d, J = 6.3 Hz, H-8a), 5.56 (1H, d, J = 6.3 Hz, H-7a), 5.74 (1H, d, J = 7.8 Hz, H-7c), 6.20 (2H, d, J = 8.5 Hz, H-2b and H-6b), 6.25 (1H, s, H-12d), 6.37 (1H, s, H-12b), 6.45 (2H, d, J = 8.5 Hz, H-3b and H-5b), 6.49 (1H, t, J = 2.0 Hz, H-12c), 6.52 (1H, t, J = 2.5 Hz, H-12a), 6.55 (2H, d, J = 2.5 Hz, H-10a and H-14a), 6.72 (2H, d, J = 8.5 Hz, H-3d and H-5d), 6.73 (2H, d, J = 2.0 Hz, H-10c and H-14c), 6.93 (2H, d, J = 8.5 Hz, H-3c and H-5c), 6.99 (2H, d, J = 8.5 Hz, H-3a and H-5a), 7.02 (2H, d, J = 8.5 Hz, H-2d and H-6d), 7.34 (2H, d, J = 8.5 Hz, H-2a and H-6a), 7.37 (2H, d, J = 8.5 Hz, H-2c and H-6c); ¹³C NMR (90 MHz, acetone- d_6) δ 45.4 (d, C-7d), 46.9 (d, C-8b), 49.5 (d, C-7b), 51.5 (d, C-8d), 55.1 (q, OCH₃-4b), 55.2 (q, OCH₃-4d), 55.3 (q, OCH₃-11d), 55.5 (q, OCH₃-4c, interchangeable with OCH₃-4a, OCH₃-11c and OCH₃-13a, interchangeable with OCH₃-11a and OCH₃-13a), 55.6 (q, OCH₃-4a, interchangeable with OCH₃-4c, OCH₃-11a and OCH₃-13a, interchangeable with OCH₃-11c and OCH₃-13c, OCH₃-11b), 57.4 (d, C-8a and C-8c), 92.3 (d, C-12d), 92.6 (d, C-12b), 93.7 (d, C-7c), 93.9 (d, C-7a), 99.3 (d, C-12a), 99.5 (d, C-12c), 106.7 (d, C-10a and C-14a), 107.6 (d, C-10c and C-14c), 113.8 (d, C-3b and C-5b), 113.9 (d, C-3d and C-5d), 114.6 (d, C-3c and C-5c), 114.7 (d, C-3a and C-5a), 116.1 (s, C-10b), 117.2 (s, C-14b), 119.0 (s, C-14d), 128.0 (d, C-2a and C-6a), 128.2 (d, C-2c and C-6c), 128.9 (d, C-2b and C-6b), 129.3 (s and d, C-10d, C-2d and C-6d, respectively), 134.2 (s, C-1c), 134.9 (s, C-1b), 135.0 (s, C-1a), 139.9 (s, C-1d), 141.9 (s, C-9d), 143.2 (s, C-9b), 145.7 (s, C-9c), 147.6 (s, C-9a), 155.9 (s, C-11d), 158.4 (s, C-4d), 158.5 (s, C-4b), 160.2 (s, C-13b), 160.4 (s, C-4a, C-4c, C-11b), 161.4 (s, C-13d), 162.3 (s, C-11a and C-13a, C-11c and C-13c); ¹H-¹H NOESY correlations H-3a(5a)/OCH₃-4a, H-8a/H-10a(14a), H-10a(14a)/OCH₃-11a(13a), H-2b(6b)/H-8b,H-8d, H-3b(5b)/ OCH₃-4b, H-7b/H-2d(6d), H-8b/H-2b(6b), H-12b/OCH₃-11b, H-3c(5c)/OCH₃-4c, H-8c/H-10c(14c), H-10c(14c)/OCH₃-11c(13c), H-12c/OCH₃-11c(13c), H-2d(6d)/H-8d,H-7b,H-7d, H-3d(5d)/ OCH₃-4d, H-7d/H-8d, H-8d/H-2b(6b), H-12d/OCH₃-11d; ¹H-13C HMBC correlations H-2a(6a)/C-2a(6a),C-4a,C-7a, H-3a(5a)/ C-1a,C-3a(5a), H-7a/C-2a(6a),C-9a, H-8a/C-1a,C-7a,C-9a,C-10a(14a),C-13b,C-14b, H-10a(14a)/C-8a,C-10a(14a),C-11a(13a),C-12a, H-12a/C-10a(14a), C-11a(13a), H-2b(6b)/C-2b(6b), C-4b, C-7b, H-3b(5b)/C-1b,C-3b(5b),C-4b, H-7b/C-1b,C-2b(6b),C-8b,C-7d,C-8d,C-9d,C-10d, H-8b/C-1b,C-7b,C-9b,C-10b,C-14b,C-8d,C-9d,C-10d, H-12b/C-10b,C-11b,C-14b, H-2c(6c)/C-2c(6c),C-4c,C-7c, H-3c(5c)/C-1c,C-3c(5c),C-4c, H-7c/C-2c(6c),C-9c, H-8c/C-1c,C-7c,C-9c,C-10c(14c),C-13d,C-14d, H-10c(14c)/C-8c,C-10c-(14c),C-11c(13c),C-12c, H-12c/C-10c(14c),C-11c(13c), H-2d(6d)/ C-2d(6d),C-4d,C-7d, H-3d(5d)/C-1d,C-3d(5d),C-4d, H-7d/C-7b,C-9b,C-10b,C-1d,C-2d(6d),C-8d, H-8d/C-1b,C-7b,C-8b,C-10b,C-7d, H-12d/C-10d,C-11d,C-13d,C-14d, OCH₃-4a/C-4a, OCH3-11a(13a)/C-11a(13a), OCH3-4b/C-4b, OCH3-11b/C-11b, OCH₃-4c/C-4c, OCH₃-11c(13c)/C-11c(13c), OCH₃-4d/C-4d, OCH₃-11d/C-11d; EIMS (70 eV) m/z 1046 (100), 1016 (1), 928 (2).

Decamethylvaticaphenol A (4). Compound **2** (80 mg) was treated with dimethyl sulfate (0.8 mL) and potassium carbonate (0.8 g) in dried acetone (50 mL) under reflux for 24 h. The product was extracted with ethyl acetate and water, to remove dimethyl sulfate. The ethyl acetate-soluble extract was dried and purified by flash column chromatography using hexanes– EtOAc (2:1) affording **4** (decamethylvaticaphenol A, 40 mg): white powder (MeOH); mp 158–161 °C; $[\alpha]_D + 33^\circ$ (*c* 0.10,

CHCl₃); $[\alpha]_D + 29^\circ$ (c 0.10, acetone); CD (c 0.10 μ M, CHCl₃) $\Delta \epsilon_{299}$ +8.87, $\Delta \epsilon_{292}$ -6.29, $\Delta \epsilon_{280}$ +48.24, $\Delta \epsilon_{260}$ -14.04, $\Delta \epsilon_{255}$ -3.83, $\Delta \epsilon_{248}$ -81.91, $\Delta \epsilon_{238}$ +17.33, $\Delta \epsilon_{232}$ -0.45; UV (MeOH) λ_{max} (log $\epsilon)$ 284 (4.5), 247 (4.6) nm; IR (film) $\nu_{\rm max}$ 3001, 2934, 2836, 1607, 1512, 1462, 1248, 1198, 1130, 1036, 829, 754 cm⁻¹; ¹H NMR (500 MHz, acetone- d_6) δ 3.20 (3H, s, OCH₃-13b), 3.37 (1H, brd, J = 11.5 Hz, H-8b), 3.64 (3H, s, OCH₃-11a), 3.67 (3H, s, OCH₃-13a), 3.74 (3H, s, OCH3-4b), 3.76 (3H, s, OCH3-4a), 3.77 (12H, s, OCH₃-4c, OCH₃-13c, OCH₃-11d and OCH₃-13d), 3.79 (3H, s, OCH₃-4d), 4.06 (1H, dd, J = 11.5 and 10.0 Hz, H-7c), 4.36 (1H, d, J = 10.0 Hz, H-8c), 4.46 (1H, d, J = 12.0 Hz, H-8a),4.57 (1H, d, J = 4.5 Hz, H-8d), 5.15 (1H, d, J = 3.5 Hz, H-7b), 5.39 (1H, d, J = 4.5 Hz, H-7d), 5.93 (1H, d, J = 12.0 Hz, H-7a), 6.23 (1H, s, H-12b), 6.27 (2H, brs, H-10d and 14d), 6.27 (1H, brs, H-14a), 6.30 (1H, t, J = 2.3 Hz, H-12d), 6.41 (1H, d, J = 2.0 Hz, H-12c), 6.49 (1H, d, J = 2.3 Hz, H-12a), 6.50 (1H, d, J = 2.0 Hz, H-14c), 6.52 (2H, d, J = 8.5 Hz, H-3c and H-5c), 6.58 (2H, d, J = 8.5 Hz, H-2c and H-6c), 6.79 (2H, d, J = 8.7 Hz, H-3b and H-5b), 6.90 (2H, d, J = 8.6 Hz, H-3a and H-5a), 6.96 (2H, d, J = 8.5 Hz, H-3d and H-5d), 7.20 (2H, d, J = 8.7 Hz, H-2b and H-6b), 7.32 (2H, d, *J* = 8.5 Hz, H-2d and H-6d), 7.38 (2H, d, J = 8.6 Hz, H-2a and H-6a); ¹³C NMR (90 MHz, acetone-d₆) δ 37.3 (d, C-7b), 49.3 (d, C-8a), 51.6 (d, C-8c), 52.4 (d, C-8b), 55.1 (q, OCH₃-13a), 55.2 (q, OCH₃-4d), 55.4 (q, OCH₃-4a and OCH₃-4b), 55.5 (q, OCH₃-4c, OCH₃-13c, OCH₃-11d, and OCH3-13d), 55.7 (q, OCH3-13b), 57.0 (q, OCH3-11a), 58.0 (d, C-8d), 58.7 (d, C-7c), 90.5 (d, C-7a), 93.5 (d, C-7d), 93.7 (d, C-12b), 94.0 (d, C-12c), 98.1 (d, C-12a), 99.8 (d, C-12d), 105.3 (d, C-14a, C-10d and C-14d), 105.8 (d, C-14c), 114.07 (d, C-3c and C-5c), 114.11 (d, C-3b and C-5b), 114.7 (d, C-3d and C-5d), 114.8 (d, C-3a and C-5a), 115.7 (s, C-10b), 123.4 (s, C-10c), 124.5 (s, C-14b), 127.3 (d, C-2d and C-6d), 127.5 (s, C-10a), 128.9 (d, C-2c and C-6c), 130.1 (d, C-2a and C-6a), 130.5 (d, C-2b and C-6b), 131.7 (s, C-1a), 132.7 (s, C-1c), 133.8 (s, C-1b), 135.8 (s, C-1d), 141.1 (s, C-9a), 142.8 (s, C-9b), 143.2 (s, C-9c), 147.6 (s, C-9d), 158.0 (s, C-13b), 158.6 (s, C-11a and C-4b), 158.8 (s, C-4c), 159.3 (s, C-11b), 159.6 (s, C-13a), 160.3 (s, C-4d), 161.0 (s, C-4a), 161.6 (s, C-11c), 161.9 (s, C-13c, C-11d and C-13d); ¹H-¹H COSY correlations H-7a/H-8a, H-8b/H-7c, H-7c/ H-8c, H-7d/H-8d; ¹H-¹H NOESY correlations H-2a(6a)/H-7a,H-8a,H-14a, H-3a(5a)/OCH₃-4a, H-7a/H-14a, H-8a/H-2b(6b), H-12a/OCH₃-11a,OCH₃-13a, H-14a/OCH₃-13a, H-2b(6b)/H-7c,H-14c, H-3b(5b)/OCH₃-4b, H-7b/H-8b, H-8b/H-2c(6c), H-12b/ OCH3-13b, H-2c(6c)/H-7c,H-8c, H-3c(5c)/OCH3-4c, H-7c/H-14c, H-8c/H-8d, H-12c/OCH₃-13c, H-14c/OCH₃-13c, H-2d(6d)/H-8d, H-3d(5d)/OCH₃-4d; ¹H-1³C HMBC correlations H-2a(6a)/C-2a-(6a),C-4a,C-7a, H-3a(5a)/C-1a,C-3a(5a),C-4a, H-7a/C-2a(6a),C-8a,C-9a, H-8a/C-7a,C-9a,C-10b, H-12a/C-10a,C-11a,C-13a,C-14a, H-14a/C-8a,C-10a,C-12a,C-13a, H-2b(6b)/C-2b(6b),C-4b, H-3b(5b)/C-1b,C-3b(5b),C-4b, H-7b/C-9a,C-11a,C-1b,C-2b(6b),C-8b,C-9b, H-12b/C-10b,C-11b,C-13b,C-14b, H-2c(6c)/C-2c(6c),C-4c,C-7c, H-3c(5c)/C-1c,C-3c(5c), H-7c/C-7b,C-8b,C-1c,C-2c(6c),C-9c, H-8c/C-14b,C-1c,C-9c,C-14c, H-12c/C-10c,C-11c,C-14c, H-14c/ C-8c,C-10c,C-12c,C-13c, H-2d(6d)/C-2d(6d),C-4d,C-7d, H-3d(5d)/ C-1d,C-3d(5d),C-4d, H-7d/C-11c,C-1d,C-2d(6d),C-9d, H-8d/C-9c,C-10c,C-11c,C-1d,C-7d,C-9d, H-10d(14d)/C-8d,C-10d(14d), OCH₃-4a/C-4a, OCH₃-11a/C-11a, OCH₃-13a/C-13a, OCH₃-4b/ C-4b, OCH₃-13b/C-13b, OCH₃-4c/C-4c, OCH₃-13c/C-13c, OCH₃-4d/C-4d, OCH3-11d(13d)/C-11d(13d); EIMS m/z (70 eV) [M]+ 1046.

Cytotoxicity Testing. All compounds obtained in this study were tested in a panel of human cancer cell lines using established protocols.⁴³ A human oral epidermoid carcinoma (KB) cell line was used to monitor the fractionation of active constituents from the MeOH extract of *V. diospyroides*.

Acknowledgment. This investigation was supported by grant U19-CA52956 from the National Cancer Institute, NIH, Bethesda, Maryland. We thank the Nuclear Magnetic Resonance Laboratory of the Research Resources Center, University of Illinois at Chi-

cago, for provision of some of the spectroscopic equipment used in this study. We are grateful to Dr. Y. -Z. Shu for certain MS data obtained at Bristol-Myers Squibb, Pharmaceutical Research Institute, Wallingford, CT. Mr. R. B. Dvorak, Dr. A. Ito, and Dr. K. Htin of the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, are acknowledged for the MS data, the CD data, and for valuable input concerning the NMR studies, respectively.

Supporting Information Available: HMBC NMR spectra of compounds 1–5, HETCOR NMR spectrum of 2, and HMQC NMR spectra of 1, 3, and 4. This material is available free of charge via the Internet at http://pubs.acs.org.

JO9902087